

International Journal of Latest Trends in Engineering and Technology Vol.(10)Issue(2), pp.217-227 DOI: http://dx.doi.org/10.21172/1.102.35 e-ISSN:2278-621X

SLA-AWARE SCHEDULING OF VMs FOR LOAD BALANCING IN CLOUD USING A THREE PHASE OPTIMAL VM MIGRATION TECHNIQUE

Yadaiah Balagoni¹, Dr. R.Rajeswara Rao²

Abstract: SLA-Aware Scheduling of virtual machines instances on cloud datacenters for load balancing is one of the challenging issues. One of the useful feature provided by virtualization technology is, migration of virtual machine (VMs) instances from one node to another in the data center. Hence our work addresses the challenge of improving SLAs while not degrading the other performance measures. Our approach uses a three phase framework for selecting, allocating and validating the allocation cost with optimal costs. The major achievement of this work is to minimize the SLA violations compared to existing virtual machine migration techniques for load balancing. Moreover the work is not limited to any specific virtual machine image formats rather gives the best performance over all image formats to make the proposed technique VM format independent. With the extensive experimental setup the work furnishes the comparative analysis of simulations for popular existing techniques and the proposed framework.

Keywords- Cloud-Computing, SLA, Virtual Machine Migration, Load Balancing, VM Image formats.

1. INTRODUCTION

Scheduling of Virtual machines for load balancing of cloud data center nodes is, a generic framework based process where the generated workloads are distributed over multiple data center resources. The load balancing techniques brings the advantage of lower response time and better resource utilization [1]. The cloud data center based load balancing is distinguished from the domain name service based load balancing. The domain name service load balancing techniques deploys the hardware and software components to balance load for the hardware resources, whereas the cloud based load balancing techniques deploys the software algorithms or protocols to distribute the load over multiple data center nodes. Also it is to be understood that, the cloud based load balancing techniques allows the customers to use the global or geodetically distributed services based on geodetically distributed servers. Multiple parallel researches have been carried out to demonstrate the benefits of load balancing on cloud based data centers. Making the application scalable based on demand without degrading the performance, increases the reliability at the cost of VM migration. However the recent researches constraint to achieve the optimal SLA violation during VM Migration. Thus this work demonstrates A Service Level Agreement Effective Optimal Virtual Machine Migration Technique for Load Balancing on Cloud Data Centers.

2. VIRTUALIZATION BENEFITS FOR CLOUD DATA CENTERS

This work highlights the benefits of virtual machine migration and also evaluates the parameters influencing the performance and productivity [2] [3].

2.1. Open Access Control

The Virtual Machines come with a reduced abstraction in the system level and allows the provider, customer and researchers to access more properties of the system. The access to computing environment data, system level codes, hardware utilization statistics, traces of the active application, failing and down timing component configurations and the guest operating system configuration parameters and the ability to control them independently helps to understand the performance perimeters [Table -1].

	Parameter Name	Access Permissions		
Parameter Type		Traditional	Virtual Machine	
			Migration	
Processing	CPU Type	Not Allowed	Allowed	
	Allocation	Allowed	Allowed	
	Priority	Allowed	Allowed	

Table 1.Parameters for Open Access Control

¹ Assistant Professor, Department of CSE, Mahatma Gandhi Institute of Technology, Hyderabad.

² Professor, Department of CSE, University College of Engineering, Vizianagaram.

Memory	Size	Allowed	Allowed
	Buffer	Not Allowed	Allowed
Storage	Access IDE Bus	Not Allowed, Physical	Allowed, Logical
	Capture Mode	Not Allowed	Allowed
	Library Group	Allowed, Physical	Allowed, Logical
Network	IP Address	Allowed	Allowed
	MAC Address	Not Allowed	Allowed
	Internal Network	Partially Allowed	Allowed

2.2. Optimal Hardware Control

Virtual Machines come with a flexibility to change or alter the operating system and hardware components seamlessly. After the initial cost for setting up a virtual environment, the users are free to modify the computing system including the operating system, libraries, tools and other supporting patches without investing the full time needed for computing system change or upgrade [Table -2].

Parameter Type	Parameter Name	Accessibility	Accessibility		
		Traditional	Virtual Migration	Machine	
On anotin a Sautam	Version	Available	Available		
Operating System	Interoperability	No Continuous Availability	Available		
	Patch	Available	Available		
Development	Patch	Available	Available		
Environment	Device Driver	No Continuous Availability	Available		
	Version Control	Available	Available		
Configuration	Configuration Delay	Very High	Low		

2.3. Optimal Replication Control

The replication of the Virtual Machines using the snapshot feature allows the users to take timely and on demand backups of the virtual machine images. Thus the backups help to quickly reproduce the same computing environment without investing the complete setup time [Table -3].

Parameter Type	Replication Time	
	Traditional	Virtual Machine Migration
Windows Server	50 to 90 Mins	Just in Time
MAC Servers	40 to 60 Mins	Just in Time
Linux Servers	30 to 40 Mins	Just in Time

2.4. Service Provider Support for Virtual Machine Migration

The Virtual Machines are hosted by all service providers with similar configurations but with added advantages. Hence adopting to Virtual Machine computing is the best choice to avoid the lack of support and facility availability [Table -4].

Table 4.Service Provider Support for Migration					
Server Type	Amazon Cloud	Microsoft Azure	Google App	IBM Bluemix Cloud	Private Hosted Cloud
		Cloud	Engine Cloud		
Windows Server	YES	YES	YES	YES	NO
MAC Servers	YES	YES	YES	YES	NO
Linux Servers	YES	YES	YES	YES	NO

2.5. Optimal Manageability of Updates

Application on Virtual Machines hosted on cloud is always liable for automatic and regular updates from the service provider without any extra cost. However in the other side, hosting the traditional system demands the cost and time implications for updates.

2.6. Optimal Migration Cost Control

Due to the tremendous competition in the cloud service provider space, the drop of price for each virtualization component used in the virtual machine configuration is dropping with an increasing speed. Hence rather than up-gradation cost for traditional systems, the cloud based virtual machines are very much cost effective [Table-5]. And the Cost Compatibility is projected in Fig-1.

Table 5.Reduction of Cost for Virtual Machine Migration / Hosting (Approx. Cost)					
Server Type	Amazon Cloud	Microsoft Azure Cloud	Google App Engi Cloud	ineIBM Bluemix Cloud	
2013	\$0.64	\$0.70	\$0.63	\$0.61	
2014	\$0.48	\$0.45	\$0.49	\$0.47	
2015	\$0.35	\$0.39	\$0.31	\$0.30	
2016	\$0.28	\$0.26	\$0.29	\$0.26	

Fig.1.Cost for Virtual Machine Migration / Hosting

Henceforth it is been demonstrated that the virtual machine migration and hosting are been advocated by all major service providers.

3. PROPOSED OPTIMAL MIGRATION FRAMEWORK

This work deploys a cost evaluation function to determine the most suitable virtual machine to be migrated considering the least SLA violation. The framework for optimal migration is presented here [Figure - 2].

Fig.2.Optimal Framework Virtual Machine Migration

The proposed framework is classified into three major algorithm components as VM identification, VM migration and Cost Function. Algorithms for all three phases are been discussed here.

3.1Virtual Machine Identification

The first phase of the algorithm analyses the highest loaded node and migrates the virtual machine to the available less loaded node. After identifying the source and destination, the algorithm identifies the virtual machine to be migrated. The outcome of this algorithm is to obtain optimal load balanced condition for the data center after virtual machine migration. The detail of the algorithm is explained here:

Step-1.1. Calculate the load on each node in the data center

$$Phy_{CPUCapacity} = \sum_{i=1}^{n} VM(i)_{CPUCapacity}$$
(1)

$$Phy_{MemoryCapacity} = \sum_{i=1}^{n} VM(i)_{MemoryCapacity}$$
(2)

$$Phy_{IOCapacity} = \sum_{i=1}^{n} VM(i)_{IOCapacity}$$
(3)

$$Phy_{NetworkCapacity} = \sum_{i=1}^{n} VM(i)_{NetworkCapacity}$$
(4)

$$\Pi = (Phy_{CPUCapacity} + Phy_{MemoryCapacity} + Phy_{IOCapacity} + Phy_{NetworkCapacity})$$
(5)

Step-1.2.In the second step, the algorithm identifies the highest and lowest loaded node in the data center

$$\Pi_{MAX} = \begin{cases} If \ \Pi_i > \Pi_j, then \ \Pi_{MAX} = \Pi_i \\ Else \ \Pi_j > \Pi_i, then \ \Pi_{MAX} = \Pi_j \end{cases}$$
(6)
$$(If \ \Pi_j < \Pi_j, then \ \Pi_j = \Pi_j$$

$$\Pi_{MIN} = \begin{cases} IJ \ \Pi_i < \Pi_j, \text{ then } \Pi_{MIN} = \Pi_i \\ Else \ \Pi_j < \Pi_i, \text{ then } \Pi_{MIN} = \Pi_j \end{cases}$$
(7)

Step-1.3. Once the source and destination is identified as MAX and MIN respectively, the identification of virtual machine to be migrated is carried out. During the identification, the optimal load balanced condition is identified. VM(i) =

$$VM(i)_{CPUCapacity} + VM(i)_{MemoryCapacity}$$
 (8)

$$+VM(i)_{IOCapacity} + VM(i)_{NetworkCapacity}$$

$$\Pi_{MAX} - VM(i) = \Delta_{Source}$$
(9)

$$\Pi_{MIN} + VM(i) = \Delta_{Destination} \tag{10}$$

Step-1.4. After the calculation of the new load, the source and destination nodes must obtain the optimal load condition, where the loads are nearly equally balanced.

$$\begin{cases} If \ \Delta_{Source} \approx \Delta_{Destination}, Then \ Migrate \ VM(i) \\ Else \ i = \in (n) \end{cases}$$
(11)

Where n is total number of virtual machines in Source node.

3.2 Virtual Machine Allocation

During the second phase of the algorithm, this work analyses the time requited for VM allocation for the selected virtual machine with other parameters like Energy consumption, Number of host shutdowns, Execution time - VM selection time, Execution time - host selection time and Execution time - VM reallocation time. These parameters will help in generating the cost function

Step-2.1. Calculate the Energy consumption at the source before migration:

$$E_{Source} = \sum_{i=1}^{I} (E_{CPU} + E_{NETWORK} + E_{IO} + E_{MEMORY})_i$$
(12)

Step-2.2. Calculate the Energy consumption at the destination after migration:

$$E_{Destination} = \sum_{i=1}^{t} (E_{CPU} + E_{NETWORK} + E_{IO} + E_{MEMORY})_i$$
(13)

Step-2.3. Calculate the difference in Energy consumption during migration:

$$E_{Diff} = \left| E_{Source} - E_{Destination} \right| \tag{14}$$

Step-2.4. Calculate the Number of host shutdowns, Execution time - VM selection time, Execution time - host selection time and Execution time - VM reallocation time during migration:

$$\begin{pmatrix} Host_{Down} & VM_{SelectionTime} \\ Host_{SelectionTime} & VM_{ReallocationTime} \end{pmatrix}$$
(15)

Henceforth the comparative analysis is been demonstrated in the results and discussion section.

3.3Cost Analysis of Migration

The optimality of the algorithm focuses on the SLA. During the final phase of the algorithm, the migrations is been validated with the help of the cost function to measure the optimality of the cost. The final cost function is described here:

$$Cost(VM) = E_{Diff} + \begin{pmatrix} Host_{Down} & VM_{SelectionTime} \\ Host_{SelectionTime} & VM_{ReallocationTime} \end{pmatrix} + SLA_{Violation}$$
(16)

4. PERFORMANCE EVALUATION MATRIX

A novel matrix to evaluate the performance of the proposed migration algorithm is been coined in this work. The parameters names, details of the parameter with the optimality expectation are been proposed here [Table -7]:

Parameter	Details	Optimality Expectation
Number of hosts	Number of Host Machines during the simulation or testing	rSame throughout all simulations
Number of VMs	Number of Virtual Machines during the simulation o testing	rSame throughout all simulations
Total simulation time	Duration of the Simulation	Same throughout all simulations
Energy consumption	The amount of Energy difference during migration	Expected to be Minimum
Number of VM migrations	Total number of Virtual machine migrations	Expected to be Mean of all the techniques
SLA performance degradation	SLA performance degradation due to migration	Expected to be Mean of all the techniques
SLA time	SLA time per active host	Expected to be Mean of all the techniques
SLA violation	Overall SLA violation	Expected to be Minimum
Average SLA violation	Average SLA violation	Expected to be Mean of all the techniques
Host shutdowns	Number of host shutdowns	Expected to be Maximum
Host shutdown – Mean	Mean time before a host shutdown	Expected to be Mean of all the techniques
Host shutdown – Standard Deviation	Standard Deviation time before a host shutdown	Expected to be Minimum
VM migration time - Mean	Mean time before a VM migration	Expected to be Minimum
VM migration time – Standard Deviation	Standard deviation time before a VM migration	Expected to be Minimum
VM selection mean	Execution time for VM selection in mean	Expected to be Minimum
VM selection time - Standard Deviation	Execution time - VM selection standard deviation	Expected to be Minimum
Host selection time - mean	Execution time for host selection in mean	Expected to be Minimum
Host selection time - Standard	Execution time for host selection in standard deviation	Expected to be Minimum

Table 7.Performacne Evaluation Matrix and Parameters

Deviation		
VM reallocation time - Mean	Execution time for VM reallocation in mean	Expected to be Minimum
VM reallocation time - Standard Deviation	Execution time for VM reallocation in standard deviation	Expected to be Minimum
Total execution time – Mean	Total Execution time for VM reallocation in mean	Expected to be Minimum
Total execution time - Standard Deviation	Total Execution time for VM reallocation in standard deviation	Expected to be Minimum

The analysis of the cost matrix is demonstrated in the results and discussion section of the work.

5. RESULTS AND DISCUSSION

This work has performed extensive testing to demonstrate the improvement over the existing migration techniques [6] [7] [8] [9] [10]. The various considered migration techniques are listed with the used acronyms here [Table - 8]:

Table 8.List of Techniques used for Performance Comparison			
Used Name in this Work	Selection Policy	Allocation Policy	
IQR MC	Maximum Correlation	Inter Quartile Range	
IQR MMT	Minimum Migration Time	Inter Quartile Range	
LR MC	Random Selection	Local Regression	
LR MMT	Minimum Migration Time	Local Regression	
LR MU	Minimum Utilization	Local Regression	
LR RS	Rom Selection	Local Regression	
LRR MC	Maximum Correlation	RobustLocal Regression	
LRR MMT	Minimum Migration Time	RobustLocal Regression	
LRR MU	Minimum Utilization	RobustLocal Regression	
LRR RS	Rom Selection	RobustLocal Regression	
MAD MC	Maximum Correlation	Median Absolute Deviation	
MAD MMT	Minimum Migration Time	Median Absolute Deviation	
MAD MU	Minimum Utilization	Median Absolute Deviation	
MAD RS	Rom Selection	Median Absolute Deviation	
THR MC	Maximum Correlation	Static Threshold	
THR MMT	Minimum Migration Time	Static Threshold	
THR MU	Minimum Utilization	Static Threshold	
THR RS	Rom Selection	Static Threshold	
OPT ALGO	Proposed Algorithm Part – 1	Proposed Algorithm Part – 2	

The simulation of the algorithm is based on CloudSim, which is a framework for modeling and simulation of cloud computing infrastructures and services. The experimental setup used for this work is been explained here [Table -9]:

Table 9.Experimental Setup				
Setup Parameters	Number of Physical Hosts	Number of Virtual Machines	Total Simulation Time(In Sec)	
Values	800	1052	86400.00	

Firstly this work analyses the energy consumption of the proposed method and compare with the existing policies [Table - 10]:

Policies	^	Change (Increased)	
	Energy (kWH)	Proposed – Existing	Change in %
IQR MC	46.86	2.46	5
IQR MMT	47.85	1.47	3
LR MC	44.35	4.97	11
LR MMT	45.37	3.95	9
LR MU	40.38	8.94	22
LR RS	40.35	8.97	22
LRR MC	40.37	8.95	22
LRR MMT	40.38	8.94	22
LRR MU	40.14	9.18	23

LRR RS	40.54	8.78	22	
MAD MC	44.99	4.33	10	
MAD MMT	45.61	3.71	8	
MAD MU	47.36	1.96	4	
MAD RS	44.71	4.61	10	
THR MC	40.85	8.47	21	
THR MMT	41.81	7.51	18	
THR MU	44.08	5.24	12	
THR RS	41.34	7.98	19	
OPT ALGO	49.32	-	-	

The proposed framework, demonstrates nearly 10% increase compared to the existing policies due to improvement in SLA [Figure -3].

Fig.2.Energy Consumption Comparison

Secondly this work analyses the number of virtual machine migrations during the proposed method and compare with the existing policies [Table - 11]:

01 1	Table 11.Num	ber of VM Migrations			
Policies	Number of VM Migrations	Change (Increased) Proposed –Existing	Change in %	Change in %	
IQR MC	5085	704	14		
IQR MMT	5502	287	5		
LR MC	2203	3586	163		
LR MMT	2872	2917	102		
LR MU	2808	2981	106		
LR RS	2203	3586	163		
LRR MC	2872	2917	102		
LRR MMT	2808	2981	106		
LRR MU	2348	3441	147		
LRR RS	2244	3545	158		
MAD MC	4778	1011	21		
MAD MMT	5265	524	10		
MAD MU	5628	161	3		
MAD RS	4810	979	20		
THR MC	4392	1397	32		
THR MMT	4839	950	20		
THR MU	5404	385	7		
THR RS	4452	1337	30		
OPT ALGO	5789	-	-		

The proposed framework, demonstrates nearly 50% increase compared to the existing policies due to improvement in SLA [figure -3].

Fig.3.Number of VM Migration Comparison

Third, this work analyses the percentage of SLA violation during the proposed method and compare with the existing policies [Table - 12]:

	SLA Violation	Change (Decreased)	Change in %	
Policies	(In %)	Existing – Proposed		
IQR MC	1.13%	0.0015	13	
IQR MMT	1.05%	0.0007	7	
LR MC	3.17%	0.0219	69	
LR MMT	3.16%	0.0218	69	
LR MU	3.39%	0.0241	71	
LR RS	3.17%	0.0219	69	
LRR MC	3.16%	0.0218	69	
LRR MMT	3.39%	0.0241	71	
LRR MU	3.74%	0.0276	74	
LRR RS	3.57%	0.0259	73	
MAD MC	1.53%	0.0055	36	
MAD MMT	1.31%	0.0033	25	
MAD MU	1.53%	0.0055	36	
MAD RS	1.56%	0.0058	37	
THR MC	3.09%	0.0211	68	
THR MMT	3.25%	0.0227	70	
THR MU	2.73%	0.0175	64	
THR RS	3.13%	0.0215	69	
OPT ALGO	0.98%	_	-	

Fable 12.SLA	Violation	Improvement
--------------	-----------	-------------

~

The proposed framework, demonstrates nearly 70% improvement compared to the existing policies [Figure - 4].

Fig.4.SLA Violation Comparison

Fourthly this work analyses the VM selection time during the proposed method and compare with the existing policies [Table - 13]:

Table 13.VM Selection Time						
Policies	VM Selection Time (In Sec)	Change((In Sec)	(Increased / Decreased)			
IQR MC	0.00134	0.00089	Decreased			
IQR MMT	0.00022	0.00023	Increased			
LR MC	0.0013	0.00085	Decreased			
LR MMT	0.00044	-	-			
LR MU	0.00017	0.00028	Increased			
LR RS	0.00104	0.00059	Decreased			
LRR MC	0.00022	0.00023	Increased			
LRR MMT	0.00054	0.00009	Decreased			
LRR MU	0.00011	0.00034	Increased			
LRR RS	0.00016	0.00029	Increased			
MAD MC	0.0022	0.00175	Decreased			
MAD MMT	0.00022	0.00023	Increased			
MAD MU	0.00027	0.00018	Increased			
MAD RS	0.00071	0.00026	Decreased			
THR MC	0.00223	0.00178	Decreased			
THR MMT	0.00017	0.00028	Increased			
THR MU	0.00005	0.0004	Increased			
THR RS	0.00011	0.00034	Increased			
OPT ALGO	0.00045	-	-			

The proposed framework, demonstrates reduction of VM selection time compared to the 50% of the existing policies [Figure -5].

Fig.5.VM Selection Time Comparison

Finally, the proposed technique is been tested for the load balancing with the below furnished simulation setup [Table -14].

rable 14.Load Datalicing Simulation Setup						
Simulation	Requests p	erData S	izeAvg. Users	Virtual Machines	Memory	CPU
Duration (Secs)	InUser	(Bytes)				
216000	120	2000	2000	5	512	2.4 GhZ

Table 14.Load Balancing Simulation Setup

The CPU utilization achieved during the simulation is furnished below [Table -15] and 100% of the CPU utilization is been achieved during load balancing.

Table 15 Load Balancing Simulation

Cloudlet ID	STATUS	Data center ID	VM ID	Start Time	Finish Time	Time	Utilization
1	SUCCESS	1	0	0	800	800	100%
2	SUCCESS	2	0	0	800	800	100%
3	SUCCESS	3	0	0	800	800	100%
9	SUCCESS	1	0	800	1601	801	100%
10	SUCCESS	2	0	800	1601	801	100%
11	SUCCESS	3	0	800	1601	801	100%
25	SUCCESS	1	0	1601	2402	801	100%
28	SUCCESS	2	0	1601	2402	801	100%
31	SUCCESS	3	0	1601	2402	801	100%
37	SUCCESS	1	0	2402	3203	801	100%
40	SUCCESS	2	0	2402	3203	801	100%
43	SUCCESS	3	0	2402	3203	801	100%
26	SUCCESS	1	3	2405	3208	803	100%
29	SUCCESS	2	3	2405	3208	803	100%
32	SUCCESS	3	3	2405	3208	803	100%
35	SUCCESS	1	3	2405	3208	803	100%
49	SUCCESS	2	0	3203	4004	801	100%
52	SUCCESS	3	0	3203	4004	801	100%
55	SUCCESS	1	0	3203	4004	801	100%
293	SUCCESS	2	3	20071	20874	803	100%
296	SUCCESS	3	3	20071	20874	803	100%

6. CONCLUSION AND FUTUREWORK

Load Balancing can be achieved through virtual machine migration. However the existing migration techniques constraints to improve the SLA and often compromise to a higher scale on the other performance evaluation factors. This work, demonstrates the optimal three phase virtual machine migration technique with up to 70% improvement to retain SLA compared to the other virtual machine migration technique. The work also elaborates on the virtual machine image operability most suitable for migration and determines the best format. However the proposed technique is independent of the virtual machine image format and demonstrates the same improvement. The comparative analysis is been done with the proposed technique with the existing techniques like IQR MC, IQR MMT, LR MC, LR MMT, LR MU, LRR MC, LRR MMT, LRR MU, LRR RS, LR RS, MAD MC, MAD MU, MAD RS, THR MC, THR MMT, THR MU and THR RS. The work also furnishes the practical evaluation results from the simulation to retain the improvement of the other parameters at least to the mean of other techniques during SLA improvement. Also this proposed technique for virtual machine migration demonstrates no loss in existing CPU utilization during load balancing.

7. REFERENCES

- T. N. Y. Times, "The cloud factories: Power, pollution and the internet. [Online]. Available: http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industryimage.html, 2014"
- [2] Beloglazov and R. Buyya, "Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints", IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7, pp. 1366-1379, 2013
- [3] H. Xu and B. Li, "Anchor: A versatile and efficient framework for resource management in the cloud", IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1066-1076, 2013
- [4] S. Di and C.-L. Wang, "Dynamic optimization of multi-attribute resource allocation in self-organizing clouds", IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 3, pp. 464-478, 2013
- [5] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang and X. Zang, "Cost-aware cooperative resource provisioning for heterogeneous workloads in data centers", IEEE Trans. Comput., vol. 62, no. 11, pp. 2155-2168, 2013
- [6] X. Liu, C. Wang, B. Zhou, J. Chen, T. Yang and A. Zomaya, "Priority-based consolidation of parallel workloads in the cloud", IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 9, pp. 1874-1883, 2013
- [7] D. Carrera, M. Steinder, I. Whalley, J. Torres and E. Ayguad, "Autonomic placement of mixed batch and transactional workloads", IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 2, pp. 219-231, 2012
- [8] Y. Lee and A. Zomaya, "Energy efficient utilization of resources in cloud computing systems", The J. Supercomput., vol. 60, no. 2, pp. 268-280, 2012
- [9] T. Ferreto, M. Netto, R. Calheiros and C. De Rose, "Server consolidation with migration control for virtualized data centers", Future Generation Comput. Syst., vol. 27, no. 8, pp. 1027-1034, 2011
- [10] K. Mills, J. Filliben and C. Dabrowski, "Comparing vm-placement algorithms for on-demand clouds", Proc. IEEE 3rd Int. Conf. Cloud Comput. Tech. Sci., pp. 91-98, 2011